Entropy, Free Energy, and Equilibrium

HW-chapter 18

№	Questions
1	Which of the following reactions has the largest positive molar entropy change? a) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ b) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ d) $\mathrm{KClO}_{4}(\mathrm{~s})+4 \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{KCl}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g})$
2	Which of the following will have the greatest standard molar entropy $\left(S^{\circ}\right)$? a) $\mathrm{NH}_{3}(g)$ b) $\mathrm{H}_{2} \mathrm{O}(l)$ c) $\mathrm{He}(g)$ d) $\mathrm{CaCO}_{3}(s)$
3	Hydrogen reacts with nitrogen to form ammonia $\left(\mathrm{NH}_{3}\right)$ according to the reaction $3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)$ The value of ΔH° is $-92.38 \mathrm{~kJ} / \mathrm{mol}$, and that of ΔS° is $-198.2 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. Determine ΔG° at $25^{\circ} \mathrm{C}$. a) $+5.897 \times 104 \mathrm{~kJ} / \mathrm{mol}$ b) $-16.66 \mathrm{~kJ} / \mathrm{mol}$ c) $-33.32 \mathrm{~kJ} / \mathrm{mo}$ d) $+297.8 \mathrm{~kJ} / \mathrm{mol}$
4	 a) $169.2 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ b) $1343.2 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ c) $-169.2 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ d) $-29.4 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
5	Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ decomposes according to the equation $\mathbf{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \leftrightarrow \mathbf{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ Calculate Kp for this reaction at $25^{\circ} \mathrm{C} .\left(\Delta \mathrm{H}^{\circ}=-98.2 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{S}^{\circ}=70.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\right)$ a) 1.3×10^{-21} b) 20.9 c) 3.46×10^{17} d) 7.5×10^{20}

